UCSC Computer Engineering
CE 107: Probability and Statistics for Engineers
Summer 2016

Instructor: Alexandre Brandwajn
Office: UCSC Campus, Engineering-2 223
E-mail: alexb@soe.ucsc.edu
Phone: 831-459 4023
Office hours: Tu 10:45-11:45 am UCSC Main Campus & by appointment
TA: Samira Zare, e-mail: szare@ucsc.edu
Sections/TA Office hours: to be announced

Grade policy: 65% examinations, 35% quizzes; failing grade: below 50% in either component

Planned: 3 examinations (no final), frequent quizzes on class material, homework assignments (ungraded)

Projected course outline

I. Introductory Notions
probabilistic phenomena, relationship to experiments, intuitive notions
process, random variable
statistics, inference from limited data and outcomes of repeated experiments
random experiment, sample space, sample points
probability measures, probability axioms

II. Conditional Probability
motivation, law of total probability, independence of events
Bayes’ theorem
application to reliability

III. Random Variables & Transforms
distribution function, pmf, pdf (discrete/continuous random variables)
characterization, moments
jointly distributed random variables, covariance, independence
generation of pseudo-random variates for simulation experiments
sums of independent random variables, convolution
conditional moments
transform methods, moment generating function, generating function
sums of independent random variables
general inequalities and applications, bounds, application to design assessment
relative frequency and probability, law of large numbers, precision of measurements

IV. Selected Probability Distributions & Applications, Statistics
discrete, continuous
negative exponential random variable
Gaussian random variable, Central Limit Theorem, precision of repeated measurements
applications in statistics, performance evaluation and reliability

V. Elements of Stochastic Processes
basic notions, examples
counting, Bernoulli, Poisson process
birth and death process, equilibrium, steady state
Markov chains, state classification, ergodicity, applications

The projected course outline is only an initial plan. The actual number, order and extent of subjects covered may vary depending on a number of factors including, but not limited to, class progress.
Cheating and dishonesty are not considered acceptable.