Physics 133, Summer 2015

Credits: 5
Prerequisite: Physics 101A. Prerequisites waived for non-UCSC students.
Time: TTh 1 PM - 5 PM
Course meeting dates: 06/22/14 - 08/28/14
Place: Natural Sciences 2 Rm. 110
Instructor: Alice Durand
Instructor email: adurand@ucsc.edu
Office hours: On appointment (or stop by ISB 236)
Teaching Assistant: Dean Henze
Teaching Assistant email: dhenze@ucsc.edu
Laboratory Manager: Prof. George Brown, Nat Sci 2 Rm. 176

At least one staff member will be present in the lab at all times.

Course description

Course homepage
This syllabus and other resources are available on the eCommons course page at http://ecommons.ucsc.edu. You will need a UCSC ID and CruzGold password to access the course page.

Summary
This course will introduce you to intermediate level experiments on electronic circuits and complex impedance, the absorption of gamma rays, and examining atomic spectra. It will familiarize you with equipment commonly used in physics laboratories (e.g. oscilloscopes, oscillators, Geiger-Muller tubes, electronic counters, spectrometers). You will learn how to effectively take data and assess your results using error analysis.

Course requirements
• Students are asked to work in pairs to complete the experiments. You cannot take data alone, you and your partner must work together to obtain the data needed.

• Be present in the laboratory two days per week during the class section. Even if you are not taking data that day, you will need time to prepare the next experiment, analyze your data, and discuss with your partner and instructors. It is very important to analyze your data as you go, as you may find you need to re-take data!
• Complete three experiments and submit a written report for each. The format of
the written report is described in the lab manual. The lab reports should range
from 5 to 10 pages and MUST contain an abstract, introduction, procedure, data
section, analysis section, and a conclusion, along with any references used.

• Complete two in-depth Explorations for two labs of your choice. These should be
at least 2-3 pages in length, and will be turned in along with your lab report.

• Maintain a laboratory notebook of your work, detailing what you did, the data
collected, and any exercises given in the lab manual. It will be very valuable to
you when writing up your lab report. All notebooks will be collected at the end
of the course and will make up a portion of your grade.

• Attend the introductory sessions on error analysis and course expectations. A
lecture on radiation safety will be held on Thursday, 6/25, and is MANDATORY
for all students.

• Complete one homework assignment on error analysis. The homework will be
based on the error analysis lectures.

Course materials

You will need a Physics 133 lab manual, which is available at the bookstore. Also
required is a bound laboratory notebook, which you should bring to the first lab session
on Tuesday, June 23.

All of the quantitative work can be done on a personal computer with a spreadsheet
program. I highly recommend familiarizing yourself with a plotting/data analysis pro-
gram such as gnuplot, Grace, Matlab, Mathematica, etc. It will be extremely useful in
the long run, and your graphs will look extra nice. I personally use Grace, and a short
manual for it will be provided on ecommons. You can use your preferred word processing
program to write up the report, but Latex is strongly recommended. An example Latex
document will be provided on ecommons.

The homework assignment will be out of the book An Introduction to Error Analysis
by John Taylor. Any relevant sections will be given to you online, so you do not need
to buy the book. You are welcome to use any other books on error analysis. Another
one I recommend is A Practical Guide to Data Analysis for Physical Science Students,
by Louis Lyons.

Grading policy

Lab reports (60%)

Evaluations will be based on the three written reports describing the experiments per-
formed. The report should be written in the style of an article submitted to a physics
In-depth Exploration (20%)

As part of TWO of your lab reports (you may choose which two), you will also submit an extra Exploration section that goes in depth on a particular aspect of that lab. Each Exploration is worth 10% of your grade. You have two possible types of Explorations:

- **Option 1: Further Research** - choose one topic below:
 1. Give an extensive historical background of the experiment. You can focus on the scientists involved, the development of the experiment, or the development of the apparatus.
 2. Perform theoretical calculations which delve deeper into the physics of the experiment. For example, show the calculations for more complicated circuits in the Low-Frequency Impedance lab, or describe in detail the atomic transitions involved in the Spectroscopy lab.

These are to be done INDEPENDENTLY from your lab partner. The total length should be at least 2-3 pages.

- **Option 2: Further Experiment** - Design and carry out an extra experiment by using and/or modifying the given apparatus. You must address the points below:
 1. What will your extra experiment test or show? Provide some background on the physics.
 2. Draw a labeled schematic of your new experiment.
 3. Briefly describe the procedure for your new experiment.
 4. Show the data/results you obtain with your new experiment.
 5. Discuss the results. Are they what you expected?

The experiment may be done WITH your lab partner, but you must each still submit a separate Exploration writeup in your own words. The total length should be at least 2-3 pages.

The entire upper division/lower division lab/physics demonstration room resources are at your disposal - if you’d like some equipment or material to modify your apparatus, just come talk to me and we’ll find it!
If you have your own idea for an Exploration that does not fall within the above categories, let me know! The Explorations are to be submitted along with your lab report, but as a separate document. An Exploration plan describing your intended project (≈ 1 page) will be due about halfway into each experiment time block.

Note: The Impedance lab takes longer than the other two labs, so be sure to plan accordingly if you want to do an Exploration for it!

Lab notebook (10%)

The lab notebook will be graded based on procedure (keeping notes of what you did), data (all of your data should be kept in the notebook), and the exercises from the lab manual.

Homework (10%)

The homework assignment will be on error analysis.

Schedule

The course breaks into three 3-week blocks, and a new experimental cycle begins with each block. Please bring your finished lab reports to the second class session after the block ends. Note that your final lab reports are due on Friday, August 28 (not a class day). These may be turned into my mailbox in ISB 232 by 5 pm. This is a HARD DEADLINE, absolutely NO LATE REPORTS will be accepted! Your lab notebooks are due along with the last lab report.

Experiments start: Tuesday 6/23, Thursday 7/16, and Thursday 8/6

Reports are due at the beginning of class on: Thursday 7/23, Thursday 8/13, and Friday 8/28

Exploration plans are due in class on: Thursday 7/2, Tuesday 7/28, and Tuesday 8/18

Homework is due at the beginning of class on: Thursday 7/16